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0.3 Power electronic switches
A power electronic switch integrates a combination of power electronic components or power
semiconductors and a driver for the actively switchable power semiconductors. The internal
functional correlations and interactions of this integrated system determine several
characteristics of the switch.

Figure 0.5 shows the power electronic switch system with its interfaces to the external electric
circuitry (normally high potential) and to the control unit (information processing, auxiliary
power supply). The necessary potential separation is supported by optical or inductive
transmitters.
The possible combinations of power semiconductors differing from each other by switch current
and voltage direction are shown in Figure 0.6.
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Figure 0.5 Power electronic switch system

On the one hand, the parameters of a complete switch result from the switching behaviour of the
semiconductor which, by design of the semiconductor chips, has to be adapted to the operation
mode of the whole switch. On the other hand, the driver unit is responsible for all main
parameters of the switch and takes charge the most important protectional functions.
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Figure 0.6 Possible combinations of power semiconductors

Basic types of power electronic switches
Due to the operational principles of power semiconductors, which are mainly responsible for the
dominant characteristics of the circuits, power electronic switches may be split up into the
following basic types. The main current and voltage directions result from individual circuit
requirements.

Hard switch (HS, Figure 0.7)

Except for the theoretical case of pure ohmic load, a single switch with hard turn-on and turn-off
switching behaviour can be used only together with a neutrally switchable power semiconductor
in a commutation circuit with a minimum passive energy store (CKmin; LKmin). Compared to the
neutral switch which does not have any control possibility, the hard switch may be equipped
with two control possibilites, namely individually adjustable turn-on and turn-off. Figure 0.7
shows the possible switch configurations. As for the symmetrical switch arrangements, only one
alternating current-carrying switch will operate acitvely with two control possibilities while the
other one switches neutrally.
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Figure 0.7 HS commutation circuits

Zero-current-switch (ZCS, Figure 0.8)

Power semiconductors in zero-current-switches are turned on actively and turned off passively.
Accepting the loss of one control possibility compared to HS, active switching may proceed with
considerably decreased power losses due to sufficient series inductance. Figure 0.8 shows the
possible switch configurations of a ZCS in an equivalent commutation circuit, which are also
applicable in circuits with cyclic switching without commutation. Such circuits are characterized
by continuous inductive commutation processes, i.e. active turn-on is followed by passive turn-
off.
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Figure 0.8 ZCS commutation circuits
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Zero-voltage-switch (ZVS, Figure 0.9)

Zero-voltage-switches are designed in such a way that they may be turned off actively and turned
on passively when the switch voltage drops to zero. Active turn-off may just cause very low
losses, if the parallel capacitance has been chosen high enough. Compared to HS a decrease of
power losses is possible by accepting the loss of control possibility. Figure 0.9 shows the
possible switching arrangements of zero-voltage-switches in capacitive commutation circuits.
However, zero-voltage-switches may also be applied in circuits without commutation, where
active turn-off and passive turn-on of the same switch are alternating.
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Figure 0.9 ZVS commutation circuits

Zero-current-resonant-switch (ZCRS, Figure 0.10)

If a zero-current-switch is controlled in such a way that active turn-on is started exactly when
current is at zero-crossing, there will be no current commutation. Consequently, even if there is a
minimum commutation inductance, the power losses are lower than in zero-current-switches;
they are just caused by the still necessary change in charge of the junction capacitances of the
power semiconductors. The further power loss reduction compared to ZCS demands, at the same
time, another loss of controllability, since the turn-on moment is not controllable, but is triggered
by the zero-current-crossing given by the outer circuitry. Energy flow can only be controlled
indirectly with ZCRS, either conducting or rejecting several current cycles.
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Figure 0.10 ZCRS commutation circuit
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Zero-voltage-resonant-switch (ZVRS, Figure 0.11)

This basic type of switch is a borderline case of the ZVS. If a ZVS actively turns off exactly at
zero-crossing of the applied commutation alternating voltage, the increasing switch voltage will
trigger  the current commutation process. Even in the case of minimum commutation capacitance
power losses are reduced, however at the expense of active controllability. Indirect control is
also possible with the ZVRS, if several commutation voltage cycles are connected through or
rejected.
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Figure 0.11 ZVRS commutation circuit

Neutral switch (NS, Figure 0.12)

A commutation process is finished by neutral turn-on or turn-off of a neutral switch. In this case
current and voltage drop to zero. Generally, a diode already includes these features. A neutral
switch with actively switchable power semiconductors owes this special features to a special
driver circuit.
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Figure 0.12 NS commutation circuits

Figure 0.13 shows a summary of all basic types of power electronic switches. The blank squares
are modifications of the basic types, which are required in almost all applications. If the resonant
conditions in a circuit working with soft or resonant switches are broken, the switches will have
to cope with hard switching apart from their original features (modified ZVS = MZVS; modified
ZCS = MZCS), in order to keep up operation of the whole system (see also chapter 3.8). Mostly,
the switches are operated in this deviating mode only for a very short time. In the case of hard
active turn-off of a ZVS or hard active turn-on of a ZCS, the switches are operated as ZVHS and
ZCHS, respectively.
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